Autophagy Research Update: What a difference a year makes!

Animal Models to Study Autophagy

Best Methods to Induce and Inhibit Autophagy Pharmacologically

MAPK Signaling Links Autophagy and Inflammation

Autophagy independent roles of the core ATG proteins

The Many Connections Between Autophagy and Kidney Disease

VPS34 - autophagy initiator and regulator of endosomal trafficking

VPS34, vacuolar protein sorting 34, is the only identified Class III phosphoinositide-3 kinase (PI3K) in mammals and is ubiquitously expressed in all eukaryotic cells. VPS34 is a 100 kDa protein responsible for phosphorylating phosphatidylinositol to produce phosphatidylinositol 3-phosphate (PI3P). PI3P is an important intermediate in the development of the double-membraned autophagosome during autophagy, indicating a role for VPS34 in autophagy initiation. PI3P allows VPS34 to form complexes with ATG14L during the elongation of the autophagosome membrane.

ULK1 - mammalian homologue of the yeast ATG1 kinase

Autophagy is an important cellular process involved in degradation and recycling of cellular macromolecules in response to stress or starvation. Autophagy is carried out in four main phases: phagophore nucleation, autophagosome elongation, docking and fusion with a lysosome, and vesicle breakdown and degradation. ULK1, also known as UNC51-like autophagy activating kinase 1, is a 112 kDa protein with serine-threonine kinase activity. ULK1 is one of two mammalian homologues of the yeast ATG1 kinase, known for its role in autophagy initiation (1).