Antibody suppliers

Interactions between CENPF and the additional kinetochore assembly proteins PinX1, PHB2 and Sgt1

Mitosis, the process of cell division, involves unique interactions between spindle microtubules and chromosomes, which are regulated by protein structures located on chromosomes known as kinetochores.  CENPF is a kinetochore-associated protein that is localized to chromatin during the G2 and M phases of mitosis.  The main role of CENPF is to secure kinetochore proteins to the correct location surrounding the chromatid and centromere for proper function.

TIM-3, a critical immune checkpoint in HIV research

CD4+ T-helper cells (Th) are the white blood lymphocytes expressing surface glycoprotein antigen CD4. These T-helper cells play an important role in the adaptive immune system by releasing T cell cytokines that help other immune cells to suppress or regulate immune responses. CD4+ T-helper lymphocytes can be divided into two types (Th1 and Th2) based on their cytokine secretion. Th1 cells are involved in cell-mediated immune response to intracellular pathogens and delayed-type hypersensitivity reactions.

Cluster of Differentiation 3 (CD3) (OKT3 clone) as a Marker of Immune Response Efficiency

Our immune system is a powerful defense mechanism against infection, however different variables can cause our immune response to work for or against us.  CD3 (cluster of differentiation 3) is one component of our immune signal response that is composed of four distinct chains (CD3-g, CD3-e, CD3-s and the zeta chain). These chains associate with a molecule known as the T-cell receptor (TCR) to comprise the TCR complex.

Nogo: A Promising Target for New Gene Therapies

Nogo is a neurite outgrowth inhibitor protein that plays an important role during central nervous system (CNS) development as well as in endoplasmic reticulum signaling regulation. Studies using Nogo antibodies have revealed Nogo proteins regulate precursor migration, neurite growth and branching in the developing CNS. In addition, Nogo serves as a negative regulator of neuronal growth in the adult CNS, causing wiring stabilization but greatly limiting any regeneration abilities (Schwab, 2010).

The affects of Perilipin 2 on diet and metabolism

Perilipin 2 belongs to the Perilipin family, which consists of proteins that coat intracellular lipid storage droplets. Perilipin 2 in particular is involved in lipid globule surface membrane composition, and has also been implicated in the development and maintenance of adipose tissue. Contrary to previous findings, Perilipin 2 is found in a variety of cells aside from adipocytes, ranging from fibroblasts to skin cells.

Synapsin I: Implicated in synaptic activity across a diverse range of studies

Synapsins are a family of neuronal proteins that are most renowned for their activity in modulating the pre-synaptic terminal.  Synapsin’s behavior is regulated by protein kinases and phosphatases, which alter the way that synapsin’s interact with actin filaments and other nearby proteins.  There are three isoforms of Synapsin – Synapsin I, II and III.  Synapsin I specifically localizes to the membrane of presynaptic vesicles and plays a role in regulation of axonogenesis and synaptogenesis.

FOXP3

Is has been established that the regulatory transcription factor FOXP3 (a member of the forkhead/winged-helix family of transcription factors) is imperative to immune system homeostasis through CD4+CD25+ regulatory T cell function.  Distinctively, FOXP3 binds to specific regions of DNA to modulate the activity of genes that are involved in regulating the immune system.  Interruption of FOXP3 activity leads to autoimmune disorder, due to Treg cells not having their full ability to act as an immune system balancer.

Analysis of Total & pSer724 IRE1 alpha, the Sensor of ER Stress

Inositol-requiring protein 1/IRE1 alpha (also called Endoplasmic Reticulum to Nucleus Signaling 1/ERN1; predicted mol wt 110 kDa) is a serine-threonine protein kinase/endoribonuclease which plays a highly critical role in unfolded protein response/UPR signaling, a mechanism by which eukaryotic cells sense and deal with ER stress. The latter triggers growth arrest and apoptosis in cells with misfolded proteins.

The role of TLR4 in breast cancer

Toll like receptors (TLRs) are highly conserved proteins that are first known for their role in pathogen recognition and immune response activation.  In order to elicit the necessary immune response in reaction to a foreign pathogen, TLRs trigger cytokine production depending on the behavior patterns of the pathogen itself.  Specifically, TLR4 acts through bacterial lipopolysaccharide (LPS), which composes the outer wall of Gram-negative bacteria.  Bacterial LPS is also a potent activator of the immune system.

Using SCP3/SYCP3 Antibodies as Meiosis Markers in Gametogenesis and DNA Repair Studies

The synaptonemal complex (SC) is a protein structure that forms during the synapsis of homologous chromosomes during meiosis. This structure is involved in the processes of chromosome synapsis, genetic recombination and subsequent chromosome segregation, and is essential for gametogenesis.

Pages