Reactivity | HuSpecies Glossary |
Applications | ELISA |
Clone | 567107 |
Clonality | Monoclonal |
Host | Mouse |
Conjugate | Unconjugated |
Immunogen | Chinese hamster ovary cell line CHO-derived recombinant human IL‑28B/IFN‑ lambda 3 Arg30-Val200 (Lys74Arg) Accession # AAN28264 |
Specificity | Detects human IL‑28B/IFN‑ lambda 3 in ELISAs. |
Source | N/A |
Isotype | IgG2a |
Clonality | Monoclonal |
Host | Mouse |
Purity Statement | Protein A or G purified from hybridoma culture supernatant |
Innovator's Reward | Test in a species/application not listed above to receive a full credit towards a future purchase. |
Storage | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Buffer | Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. *Small pack size (SP) is supplied either lyophilized or as a 0.2 µm filtered solution in PBS. |
Reconstitution Instructions | Reconstitute at 0.5 mg/mL in sterile PBS. |
IL-28B (also named interferon-lambda 3, IFN-lambda 3), IL-28A (IFN-lambda 2) and IL-29 (IFN-lambda 1) are type III interferons that are class II cytokine receptor ligands (1‑4). They are distantly related to members of the IL-10 family and type I IFN family (1‑4). Human IL-28B cDNA encodes a 200 amino acid (aa) protein with a 25 aa signal peptide and a 175 aa mature protein that lacks N-glycosylation sites. Mature human IL-28B shares 64% and 75% aa sequence identity with mouse and canine IL-28B, respectively, and is active across species (5). Human IL-28B shares 94% and 69% aa identity with human IL-28A and IL-29, respectively (4). Type III interferons are widely expressed, but are mainly produced by antigen presenting cells in response to viruses and double-stranded RNA that interact with Toll-like receptors or RIG-1 family helicases (2‑6). They signal through a widely expressed receptor that is a heterodimer of the IL-10 receptor beta (IL-10 R beta ) and IL-28 receptor alpha (IL-28 R alpha ; also called IFN-lambda R1) (2, 3, 7, 9). Interaction of either type I or type III IFNs with their receptors activates similar pathways, including JAK tyrosine kinase activation, STAT phosphorylation and formation of the IFN-stimulated regulatory factor 3 (ISGF-3) transcription factor complex (1‑3). Both type I and III IFNs induce anti-viral activity and upregulate MHC class I antigen expression (2‑6). Cell lines responsive to type III IFNs are also responsive to type I IFNs, but in general, higher concentrations of type III IFNs are needed for similar in vitro responses (8). In vivo, however, type III IFNs enhance levels of IFN-gamma in serum, suggesting that the robust anti-viral activity of type III IFNs may stem in part from activation of the immune system (5, 7). Anti-proliferative and antitumor activity in vivo has also been shown for type III IFNs (9‑11).
Secondary Antibodies |
Isotype Controls |
The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.
Uniprot |
|