Antibody catalog

Transferrin and the blood brain barrier

Transferrin, an iron binding protein that facilitates iron uptake in cells, is an integral part of a mechanism that may introduce antibody therapies to the central nervous system. Currently, the brain’s ability to take in antibody therapies is limited by the presence of the blood brain barrier.

The relationship between Ki67 and HIF-1 in cancer

Ki67, also known as MKI67, is best known as the leading marker of cellular proliferation. Ki67 is regulated by a balance between synthesis and degradation, and often carries a very short half-life.  First discovered to be located to dividing cells, Ki67 has since been specifically localized to the G1, S, G2 and M phases of mitosis. Soon after, it was discovered that there was a high correlation of Ki67 alongside the p53 (tumor suppressing protein 53), suggesting an implication in cancer. What’s more, the expression of Ki67 is higher in malignant cells versus control cells.

TRIF/TICAM1 and mitochondrial dynamics in the innate immune response

TRIF, also known as toll like receptor adaptor molecule 1 or TICAM1, is known for its role in invading foreign pathogens as part of our innate immune response. TRIF/TICAM1 is a TIR-domain adaptor protein (toll/interleukin-1 receptor) that interacts with the Toll-like receptors (TLRs) through intracellular signaling and recognition of its TIR site.

The identification of dopaminergic neurons using Tyrosine Hydroxylase in Parkinson's research and LRRK2

Tyrosine hydroxylase (TH) is a crucial enzyme involved in the biosynthesis of dopamine, norepinephrine and epinephrine in the brain.

Epithelial-Mesenchymal Transition (EMT) Markers

Epithelial-Mesenchymal Transition (EMT) is the trans-differentiation of stationary epithelial cells into motile mesenchymal cells. During EMT, epithelial cells lose their junctions and apical-basal polarity, reorganize their cytoskeleton, undergo a change in the signaling cascade that defines cell shape and reprograms gene expression. Collectively, these changes increase the motility of individual cells and enables the development of an invasive phenotype.

The role of Smoothened in pulmonary pathologies

The Hedgehog (Hh) family of secreted proteins is involved in a number of developmental processes, one of which is the development of cancer. Past data suggests that the Sonic hedgehog (Shh) receptor is composed of two transmembrane proteins, Patched and Smoothened.  The Hedgehog (Hh) signaling pathway is vital to the development of many tissues during embryogenesis, however, it also has an important role after development.  After development, Hh signaling regulates stem cells and their regenerative function.  When the Hh pathway is awry, signaling may turn oncogenic in nature.

The recent relationship of BRCA1 and 53BP1

The p53-binding protein 1 (53BP1) is a DNA damage response factor, which is recruited to nuclear structures at the site of DNA damage.  DNA double-strand breaks (DSBs) are mutations that are detrimental to cell viability and genome stability, and must be repaired either through homologous recombination (HR) or non-homologous end joining (NHEJ). 53BP1 specifically promotes both NHEJ as well as the inhibition of HR repair, yet the decision making on a molecular level between these two routes not clearly understood.

The effects of ethanol consumption on glutamate production and xCT

xCT is a sodium independent glutamate transporter that regulates the exchange of extracellular l-cystine and intracellular l-glutamate across the plasma membrane. This process is critical to glutathione production and protection from subsequent oxidative stress.

The role of DNMT3B in the co-incidence of methyltransferase and tumor suppressor expression in malignancies

Epigenetics is the process of heritable change in gene activity despite alteration of the hosts DNA sequence, essentially causing a change in a phenotype without a change in the genotype of a host. To change the gene sequence without interfering with the DNA is accomplished by histone and DNA methylation.  Gene silencing in DNA methylation is carried out by DNA methyltransferases 1, 2 and 3a/b (DNMT1, DNMT2, DNMT3A/B). On a broad level, DNMT’s methylate the fifth carbon of cytosine residues in DNA within CG dinucleotides.

The role of DNMT3A in development

Epigenetics is the study of heritable change in gene activity despite alteration of the hosts DNA sequence.  Change in gene activity done independently of the DNA sequence is achieved by way of histone and DNA methylation.  Gene silencing in DNA methylation is carried out by DNA methyltransferases 1, 2 and 3a/b (DNMT1, DNMT2, DNMT3A/B). On a broad level, DNMTs methylate the fifth carbon of cytosine residues in DNA within CG dinucleotides.

Pages