Antibodies

MMP3 - a potential target for arthritis therapies

Matrix metalloproteinases (MMPs) are responsible for the degradation of extracellular matrix proteins. MMPs are essential for tissue remodeling during normal processes such as embryonic development as well as pathological conditions such as arthritis and tumor metastasis. MMP3, a member of the stromelysin family, has broad specificity for proteins such as collagens, fibronectin, proteoglycans, and elastin making it an important player in extracellular matrix remodeling. These activities are especially important during tumorigenesis by enhancing epithelial to mesenchymal transition.

FGFR1 - regulating cell growth and proliferation in development and disease

The vertebrate fibroblast growth factor receptor (FGFR) family is an important group of proteins involved in embryonic development and the growth and proliferation of adult cells. Mutations in FGFR proteins can lead to pathologies including bone or limb defects and various forms of cancer. FGFR proteins are receptor tyrosine kinases that, upon ligand binding, dimerize and signal through the MAPK and PLCγ pathways.

Calnexin - an ER chaperone that folds the cell's glycoproteins

Calnexin is an abundant 90kDa chaperone protein that resides in the membrane of the endoplasmic reticulum. Calnexin and the related calreticulin protein function together to ensure the proper folding of glycoproteins. By binding to partially folded or misfolded proteins, Calnexin functions as an important quality control monitor ensuring proper folding of proteins destined for the plasma membrane or secretion.

GPR78 - an orphan receptor involved in psychiatric illness

G-protein coupled receptor 78 (GPR78) was identified based on homology to other GPCR family members. The GPR78 gene encodes an orphan receptor protein that is 363 amino acids in length and contains the typical seven transmembrane domain found in GPCRs. The protein is widely expressed in the mammalian brain including the pituitary and is also found in the placenta. While a ligand for GPR78 has yet to be identified, its expression pattern suggests a potential role in hormone and stress regulation as well as during pregnancy.

Integrin alpha v beta 3 - a target for inhibiting tumor angiogenesis

Integrins are a family of transmembrane proteins involved in diverse processes including cell adhesion, signal transduction, cell migration, and differentiation. They exist as heterodimers consisting of noncovalently linked alpha and beta subunits. Integrin complexes span the plasma membrane and link the cytoskeleton with the extracellular matrix. In mammals there are 18 alpha and 8 beta subunits that can assemble into 24 distinct integrin heterodimers with alternative splicing adding even more diversity.

LAMP2 - a marker of lysosomes and late endosomes

Lysosomes are membrane-bound organelles responsible for the degradation of various biological macromolecules. Vesicles containing hydrolytic enzymes bud from the Golgi and fuse with endosomes to form the mature lysosome capable of breaking down various types of cargo. Their general function in recycling biological molecules places lysosomes at center of various processes including autophagy, endyocytosis, and phagocytosis.

TGF-beta 1 - a versatile signaling molecule with roles in development and disease

The transforming growth factor-β (TGF-beta) family consists of a wide variety of signaling proteins with roles in development. TGF-beta signaling controls growth, differentiation, and immune responses and is often misregulated in cancer. TGF-beta 1 is the most widely expressed and abundant isoform of the TGF-beta family. TGF-beta proteins signal through two classes of receptors: type I (TβRI) and type II (TβRI). These receptor proteins are serine threonine kinases found at the cell surface.

PINK1 - performing mitochondrial quality control and protecting against Parkinson’s disease

PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase with important functions in mitochondrial quality control. Together with the Parkin protein, PINK1 is able to regulate the selective degradation of damaged mitochondria through autophagy. Normally PINK1 is imported into the mitochondria where it is targeted for proteolytic cleavage. This cleavage event results in unstable products and is the reason PINK1 is difficult to detect in healthy mitochondria.

NOXA - a BH3-only protein balancing cell death decisions

Noxa is a BH3-only protein involved in regulating cell death decisions. Noxa is a primary p53-response gene and is upregulated in response to p53 overexpression or DNA damage. Noxa can also be induced by alternative mechanisms including through a hypoxia-response element found in its promoter. Noxa localizes to mitochondria where it binds to Mcl1, an anti-apoptotic Bcl2 family member.

IRE1 - an important sensor in the unfolded protein response pathway

During cellular stress the protein folding capacity of the ER is diminished. In order to maintain homeostasis and ensure proper protein folding cells activate the unfolded protein response (UPR), a signaling network consisting of sensors and effectors to enhance the chaperone activity of the cell, increase degradation of accumulated proteins, and/or trigger apoptosis.  Inositol-requiring enzyme 1 (IRE1), an ER-transmembrane protein, is an essential component of the UPR pathway important for sensing and responding to ER stress.

Pages