Antibodies

CD63: is it pro-metastatic or anti-metastatic?

CD63 is a type II membrane protein belonging to tetraspanin superfamily and it play key roles in the activation of several cellular signaling cascades along with acting as TIMP1 receptor. It is expressed by activated platelets, monocytes, macrophages, granulocytes, T /B cells, and different type of cancer cells. CD63 localizes to endosomes, lysosomes and on the cellular surfaces, and is often considered as a marker for late endosomes as well as for lysosomes.

Ki67 - an established marker for labelling proliferating cells

Ki-67/MKI67 is an antigen which is expressed during G1, S, G2, and M phases of the cell cycle (mitotically active cells), but not during G0 phase (resting cells). It is a large protein with expected molecular weight of about 395 kDa, and it has a very complex localization pattern within the nucleus, one which changes during cell cycle progression. During interphase, Ki-67 antigen can be exclusively detected in the nucleus, whereas in mitotic phase, most of Ki67 pool gets relocated to the chromosomal surface.

ATM - detecting and responding to DNA damage

Ataxia telangiectasia mutated (ATM) is essential for the maintenance of genomic stability. ATM is a 370 kDa serine-threonine kinase that is constitutively expressed in various tissues. Although primarily nuclear, ATM is also found at lower levels associated with cytoplasmic vesicles. As a PI 3-kinase family member, ATM is able to phosphorylate a wide variety of substrates including proteins involved in sensing and repairing DNA damage such as p53 and Brca1 (2). Normally ATM is found as an inactive homodimer.

Caspase 1 - activating innate immune responses following infection or injury

Caspase-1 is an enzyme involved in the conversion of interleukin-1 into its active secreted form. Interleukin-1 mediates inflammatory responses during infection and disease. Caspase-1 is recruited to and activated by the inflammasome complex (1). Under normal cellular conditions caspase-1 exists in an inactive pro form. Following stimulation with LPS or various microbial signals procaspase-1 is proteolytically cleaved into 10- and 20-kDa subunits that are enzymatically active (2).

eIF2alpha - a regulator of global translation in response to cellular stress

Eukaryotic initiation factor 2 (eIF2) regulates global protein translation by binding to Met-tRNA and the 40S ribosome to form the pre-initiation complex. eIF2 is a heterotrimer consisting of alpha, beta, and gamma subunits. The 36kDA eIF2α subunit serves a key regulatory role. Phosphorylation of the serine residue at position 51 is able to block the formation of the pre-initiation complex and halt global protein translation. This regulatory mechanism allows cells to respond and adapt to diverse stresses such as nutrient deficiencies, viral infection, or general ER-stress.

PKR - Mediating cellular stress responses through multiple signaling pathways

Protein kinase R (PKR) is an intracellular stress-sensing protein that is able to detect and respond to viral infections. While PKR is able to sense and respond to a variety of signals, dsRNA is a well-characterized ligand. dsRNA produced during viral replication binds to PKR and induces a conformational change, dimerization, and exposure of the catalytic autophosphorylation site (1). Once in this active form PKR is able to phosphorylate substrates to regulate cell growth and stress responses.

UVRAG - A regulator of membrane trafficking in autophagy and endocytosis

UV resistance-associated gene (UVRAG) is a tumor suppressor that is commonly mutated in colon and breast cancer. While UVRAG was discovered for its ability to complement UV sensitivity in xeroderma pigmentosum cells, its main functions are in autophagy, endocytosis, and apoptosis. During autophagy UVRAG interacts with Beclin 1 to promote autophagosome formation. UVRAG can also interact with VPS16 to recruit membrane fusion machinery to mediate autophagosome maturation.

Tyrosine Hydroxylase - rate-limiting enzyme in catecholamine synthesis

Catecholamines are tyrosine-derived hormones that are produced in the adrenal gland. They include epinephrine, norepinephrine, and dopamine and are used as neurotransmitters by the central and peripheral nervous system. The rate limiting enzyme in catecholamine synthesis is Tyrosine Hydroxylase. Tyrosine Hydroxylase is responsible for the conversion of tyrosine to L-DOPA, which is readily converted into dopamine. Epinephrine and Norepinephrine are then further derived from dopamine.

TFEB - An essential regulator of lysosome biogenesis

Transcription factor EB (TFEB) is a member of the MiTF/TFE (Microphthalmia/TFE) subfamily of basic/helix-loop-helix/leucine zipper transcription factors. This group of proteins is involved in the proliferation and development of specific cell types such as osteoclasts or melanocytes. Recently scientists have begun to uncover the roles of MiTF/TFE proteins in organelle biogenesis and energy metabolism (1). TFEB, for example, is a known regulator of lysosome biogenesis.

Tau - A microtubule associated protein as a biomarker for Alzheimer's disease

The tau protein is a microtubule associated protein found mostly in neuronal cells where it regulates the stability of axonal microtubules as well as kinesin-dependent transport. Tau is relevant in the study of various neurological disorders as abnormal post translational modifications can alter its structure and lead to protein aggregates. Tau is present on microtubules in neuronal cells and is also associated with the plasma membrane.

Pages