Antibody database

The role of DNMT3A in development

Epigenetics is the study of heritable change in gene activity despite alteration of the hosts DNA sequence.  Change in gene activity done independently of the DNA sequence is achieved by way of histone and DNA methylation.  Gene silencing in DNA methylation is carried out by DNA methyltransferases 1, 2 and 3a/b (DNMT1, DNMT2, DNMT3A/B). On a broad level, DNMTs methylate the fifth carbon of cytosine residues in DNA within CG dinucleotides.

Niemann Pick-C1 and cholesterol dynamics

Niemann-Pick type C1 (NPC1) mediates low-density cholesterol transport from late endosomes and lysosomes to other areas of the cell via receptor mediation endocytosis.  Although cholesterol moves freely inside the cell, it cannot independently export out of the lysosome, which is where NPC1 steps in.

FANCD2 and DNA damage repair

Fanconi anemia (FA) is a genetically inherited disorder that yields cytogenetic instability, hypersensitivity to DNA crosslinking compounds and defective DNA repair. A variety of genes have been identified within the FA pathway that are referred to as the Fanconi anemia complementation group.  One member of this group, FANCD2, is monoubiquitinated in response to DNA damage.  At this point, FANCD2 specifically localizes to the nucleus to represent the site of DNA repair, often times to the DNA replication fork.

Tat-Beclin 1: The pioneering of an autophagy-inducing peptide

Autophagy is an essential process that maintains cellular homeostasis and carries out lysosome-mediated degradation of unwanted proteins in the cytoplasm.  Because of this regulatory function, autophagy is often examined when looking at disease pathways.  While our immune system initiates the removal of viruses and pathogens through the autophagic pathway, viruses, such as HIV, have developed a way to evade this process through inhibition.  Therefore, developing a reliable way to examine the molecular process of this inhibition and interaction is very desired.  The central autophagy

MHC Class I and the Herpes Simplex Virus

MHC molecules (also known as major histocompatibility complex molecules) assist in the presentation of antigens to T cells in order to eradicate foreign pathogens.  These molecules are highly polymorphic, meaning that they exist in multiple variants in order to avoid pathogens evading their activation of the immune response.  MHC Class I molecules in particular deliver cytosolic peptides to the cell surface so that they can continue on through the cytosol and ultimately the endoplasmic reticulum (ER).

Interactions between CENPF and the additional kinetochore assembly proteins PinX1, PHB2 and Sgt1

Mitosis, the process of cell division, involves unique interactions between spindle microtubules and chromosomes, which are regulated by protein structures located on chromosomes known as kinetochores.  CENPF is a kinetochore-associated protein that is localized to chromatin during the G2 and M phases of mitosis.  The main role of CENPF is to secure kinetochore proteins to the correct location surrounding the chromatid and centromere for proper function.

TIM-3, a critical immune checkpoint in HIV research

CD4+ T-helper cells (Th) are the white blood lymphocytes expressing surface glycoprotein antigen CD4. These T-helper cells play an important role in the adaptive immune system by releasing T cell cytokines that help other immune cells to suppress or regulate immune responses. CD4+ T-helper lymphocytes can be divided into two types (Th1 and Th2) based on their cytokine secretion. Th1 cells are involved in cell-mediated immune response to intracellular pathogens and delayed-type hypersensitivity reactions.

Cluster of Differentiation 3 (CD3) (OKT3 clone) as a Marker of Immune Response Efficiency

Our immune system is a powerful defense mechanism against infection, however different variables can cause our immune response to work for or against us.  CD3 (cluster of differentiation 3) is one component of our immune signal response that is composed of four distinct chains (CD3-g, CD3-e, CD3-s and the zeta chain). These chains associate with a molecule known as the T-cell receptor (TCR) to comprise the TCR complex.

Nogo: A Promising Target for New Gene Therapies

Nogo is a neurite outgrowth inhibitor protein that plays an important role during central nervous system (CNS) development as well as in endoplasmic reticulum signaling regulation. Studies using Nogo antibodies have revealed Nogo proteins regulate precursor migration, neurite growth and branching in the developing CNS. In addition, Nogo serves as a negative regulator of neuronal growth in the adult CNS, causing wiring stabilization but greatly limiting any regeneration abilities (Schwab, 2010).

The affects of Perilipin 2 on diet and metabolism

Perilipin 2 belongs to the Perilipin family, which consists of proteins that coat intracellular lipid storage droplets. Perilipin 2 in particular is involved in lipid globule surface membrane composition, and has also been implicated in the development and maintenance of adipose tissue. Contrary to previous findings, Perilipin 2 is found in a variety of cells aside from adipocytes, ranging from fibroblasts to skin cells.

Pages