Autophagy

What are the major differences between Apoptosis, Necroptosis & Autophagy?

Apoptosis is a form of programmed cell death which is mediated by cysteine proteases called caspases. It is an essential phenomenon in the maintenance of homeostasis and growth of tissues, and it also plays a critical role in immune response. The cytomorphological alterations and the key features of apoptosis are listed below:

apoptosis

The role of Parkin and autophagy in retinal pigment epithelial cell (RPE) degradation

The root of Parkinson’s disease (PD) points to a poorly regulated electron transport chain leading to mitochondrial damage, where many proteins need to work cohesively to ensure proper function.  The two key players of this pathway are PINK1, also known as PTEN or PARK6, and Parkin, also known as PARK2 - where PINK1 acts as an upstream effector of Parkin to regulate mitochondrial dynamics.  Mitochondria must maintain a healthy equilibrium and do so by undergoing a series of fission and fusion event

The use of the autophagy marker LC3 in western blot, immunocytochemistry and flow cytometry research applications as an indicator of autophagy

The process of autophagy, or lysosome-mediated degradation of damaged proteins and organelles in the cytosol, is a vital cellular process that acts as a quality control mechanism for proteins and organelles. The misregulation of autophagy can lead to an imbalance of cellular homeostasis and the subsequent development of disease.  Therefore, the study of autophagy is at the forefront of neuroscience and cancer research, among others.

Required proteins for p62/SQSTM1 regulation and a role for p62/SQSTM1 in neuronal autophagy

Autophagy is a crucial cellular process that clears the cell of protein aggregates, toxins, and damaged cell products. Accumulation of toxins, damaged cell products and unwanted proteins has been proven to play a role in aging and many forms of disease and cancer.

The role of LC3B and autophagy in alcohol induced liver disease

Autophagy is a crucial intracellular pathway that manages the degradation and recycling of long-lived proteins in the cell. The LC3 (or light chain 3) family is composed of three members, LC3A, LC3B and LC3C. Upon autophagy induction, LC3 is cleaved, causing the release of a C-terminal glycine that is required for phospholipid conjugation.  This process is vital to the formation of the autophagosome, a double membrane structure that delivers proteins to the lysosome during autophagy.

Tat-Beclin 1: The pioneering of an autophagy-inducing peptide

Autophagy is an essential process that maintains cellular homeostasis and carries out lysosome-mediated degradation of unwanted proteins in the cytoplasm.  Because of this regulatory function, autophagy is often examined when looking at disease pathways.  While our immune system initiates the removal of viruses and pathogens through the autophagic pathway, viruses, such as HIV, have developed a way to evade this process through inhibition.  Therefore, developing a reliable way to examine the molecular process of this inhibition and interaction is very desired.  The central autophagy

Why LC3B Antibodies Make Ideal Autophagosomes Membrane Markers

The human form of microtubule-associated protein light chain 3 (LC3) is expressed as 3 splice variants LC3A, LC3B, and LC3C.1 LC3B is a subunit of the MAP1A and MAP1B microtubule-binding proteins and plays a central role in autophagosome membrane structure.

Three things everyone studying autophagy should know

Novus Biologicals' antibodies are the gold standard to monitor autophagy and detect LC3 expression. The recently published Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (3rd Edition) comprehensively details methods to monitor autophagy in cell or tissue samples. Importantly, these guidelines also provide key considerations for data interpretation and tips to creating better western blot data.  

ATG11 - An important scaffolding protein in autophagosome formation and fusion

Autophagy is a cellular mechanism used to regulate cell metabolism and to recycle or degrade damaged organelles and proteins. This is accomplished through the engulfment of cargo in a double-membrane structure called the autophagosome. The autophagosome fuses with the vacuole or the lysosome where hydrolytic enzymes facilitate the degradation of biomolecules. Each step of autophagy is a tightly regulated process from the recognition of cargo to the assembly of the autophagosome. ATG11 is an important scaffolding protein that seems to be involved in selective autophagy.

NOD2 - inflammatory signaling and NFkB activation

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor (PRR) that plays an important role in recognizing bacterial pathogens and initiating an immune response. As a PRR, NOD2 recognizes bacterial lipopolysaccharide (LPS), muramyldipeptide (MDP), and other pathogen-associated molecular patterns (PAMPs). NOD2 is a 110 kDa cytoplasmic protein belonging to the Nod-like receptor (NLR) family. Its expression is largely restricted to monocytes and other antigen-presenting cells (APCs).

Pages