Antibody suppliers

Applications Focus: 5 tips for Flow Cytometry Panel Design

Article Review: Glucose-induced transcriptional regulation in cancer

Epigenetic mechanisms have been implicated in many physiological and pathophysiological processes. Among these, histone modifications including methylation, phosphorylation, acetylation and ubiquitination, significantly modify gene expression.

Application Focus: New targets for immunostaining analysis of microglia

Microglia are resident macrophages in the central nervous system (CNS) that play roles in immune defense, inflammatory response, neurodegenerative disease and development. Identification of microglia has confounded researchers aiming to understand their biological function in the CNS, as they are molecularly and morphologically similar to other myeloid cells.

Apoptosis and Necroptosis Part II: Inhibitors of apoptosis proteins (IAPs); Key regulators of the balance between necroptosis, apoptosis and survival

In the first installment of this two-part blog post titled "Apoptosis and Necroptosis: Important factors to identify both types of programmed cell death", the mechanisms by which cell death occurs and ways to identify these pathways were discussed. In this next segment, we focus on the molecular factors regulating the choice between programmed cell death and survival signaling.

Epigenetic mechanisms: new insights on the regulation of autophagy

Autophagy more than a cytosolic event

Autophagy is a cellular process whereby cytosolic components are broken down and eliminated or recycled. As a homeostatic mechanism, basal autophagic activity eliminates excess or abnormal proteins and organelles1. As an induced process, autophagy may be triggered by various external challenges, such as decreased nutrient and energy resources, and oxidative stress1.

Taking a closer look at isotype controls in antibody applications

With the wide variety of experimental techniques relying on primary antibodies, it is important to use both positive- and negative-controls in your antibody applications. We are generally more familiar with positive controls, which confirm antibody reactivity with a known-positive sample. However, we are often less familiar with adequate negative controls. An example of a negative control is an isotype control, which helps to confirm the specificity of a primary antibody.

Applications Guide: How to choose fluorophore combinations for Flow Cytometry

Flow cytometry was developed to label and examine single cells with high throughput capacity using antibodies conjugated to fluorophores. The basic concept of flow cytometry is that a cell suspension is delivered as a single stream and is passed through a light source that uses detectors to generate data sets based off cellular properties. More specifically, the light emitted by fluorescently conjugated antibodies is channeled through selected filters to sort based off preset parameters or targets used.

Make the most of your membrane: PVDF vs. Nitrocellulose

The Western Blot – a tried and true experimental protocol where protein structures are separated via molecular weight/charge and transferred to a membrane before visualization by a chemiluminescent solution (say that three times fast!). Seems simple, right?  While the step-by-step process of a western blot has for the most part remained the same over the years, variations in solutions, procedures and reagents may increase the efficacy of your results.

The role of STING/TMEM173 in gamma and encephalitis Herpes Simplex Virus (HSV)

Stimulator of interferon genes (STING), also known as TMEM173, promotes the production of the interferon’s IFN-alpha and IFN-beta.  STING possesses three functional domains: a cytoplasmic C-terminal tail, a central globular domain, and four N-terminal transmembrane motifs that attach it to the ER.  The role of STING in the immune response is specific to its ability to sense nucleic acids, particularly dsDNA.

Apoptosis and Necroptosis Part I: Important factors to identify both types of programmed cell death

Different types of cell death have classically been identified by discrete morphological changes. The hallmarks of apoptosis include cell shrinkage, nuclear fragmentation and membrane blebbing whereas necroptosis is characterized by cell swelling and plasma membrane breakdown. While these two forms of cell death are clearly distinct, substantial crosstalk occurs between them.  Accordingly, it is becoming increasingly important to understand how these processes differ and to understand ways to differentiate them in cellular populations. 

Pages