Antibody database

Application guide: Methods to monitor Autophagy

Autophagy is an essential process that cells utilize to degrade and recycle damaged material and fuel metabolism, especially under stress.  The process is evolutionarily conserved and complex, relying on over 20 key proteins. Induction of autophagy is mediated by the formation of the ULK and BECLIN complexes, the latter of which includes BH3-containing proteins and AMBRA1, resulting in the formation of a double membrane phagophore structure.

Novel Insights into Hypoxia Induced AKT Signaling

Hypoxia is a common feature of most tumors and is a product of rapid cell growth and poor vascularization1. When oxygen availability is low in the tumor environment, the hypoxia inducing transcription factors (HIFs) regulate a variety of signaling programs that can affect the balance between tumor cell apoptosis2 and autophagy3.  In normoxia, HIFs are bound by the von Hippel-Lindau protein (VHL) in the cytosol where it is degraded by the proteasome, however, under hypoxia HIFs are translocated to the nucleus where they activate survival signals.

pSIVA a Biological Switch and Sensor of Apoptosis

Altered cellular membrane integrity is one of the earliest signs of apoptosis.1,2 One key change during this event is the movement of phosphatidylserine (PS) from the inner leaflet of the cell membrane towards the cell surface.

Applications Focus: 5 tips for Flow Cytometry Panel Design

Article Review: Glucose-induced transcriptional regulation in cancer

Epigenetic mechanisms have been implicated in many physiological and pathophysiological processes. Among these, histone modifications including methylation, phosphorylation, acetylation and ubiquitination, significantly modify gene expression.

Application Focus: New targets for immunostaining analysis of microglia

Microglia are resident macrophages in the central nervous system (CNS) that play roles in immune defense, inflammatory response, neurodegenerative disease and development. Identification of microglia has confounded researchers aiming to understand their biological function in the CNS, as they are molecularly and morphologically similar to other myeloid cells.

Apoptosis and Necroptosis Part II: Inhibitors of apoptosis proteins (IAPs); Key regulators of the balance between necroptosis, apoptosis and survival

In the first installment of this two-part blog post titled "Apoptosis and Necroptosis: Important factors to identify both types of programmed cell death", the mechanisms by which cell death occurs and ways to identify these pathways were discussed. In this next segment, we focus on the molecular factors regulating the choice between programmed cell death and survival signaling.

Epigenetic mechanisms: new insights on the regulation of autophagy

Autophagy more than a cytosolic event

Autophagy is a cellular process whereby cytosolic components are broken down and eliminated or recycled. As a homeostatic mechanism, basal autophagic activity eliminates excess or abnormal proteins and organelles1. As an induced process, autophagy may be triggered by various external challenges, such as decreased nutrient and energy resources, and oxidative stress1.

Applications Focus: Labeling with multiple secondary antibodies

Multiple fluorescent labeling with secondary antibodies for immunocytochemistry and immunohistochemistry is a powerful tool to examine the behavior and interactions of more than one protein in a cell or tissue sample.  However, there are a few guidelines to follow to make sure your samples are correctly labeled. Read our top five tips for a successful multiple antibody labeling experiment:

Taking a closer look at isotype controls in antibody applications

With the wide variety of experimental techniques relying on primary antibodies, it is important to use both positive- and negative-controls in your antibody applications. We are generally more familiar with positive controls, which confirm antibody reactivity with a known-positive sample. However, we are often less familiar with adequate negative controls. An example of a negative control is an isotype control, which helps to confirm the specificity of a primary antibody.

Pages