Antibody catalog

Caspase-4 - a human protease with roles in inflammation and immunity

Caspases are a family of cysteine-aspartic acid proteases that cleave caspase proenzymes as well as other protein substrates. Caspases are well known for their role in apoptosis, but they also play a significant role in other cellular processes including inflammation (1). Apoptotic caspases include Caspases-3, -6, -7, -8, and -9. Meanwhile, human inflammatory caspases include Caspases-1, -4, -5, and -12.

TSC2 - GTPase activating protein involved in cell cycle inhibition

TSC2 is a tumor suppressor gene that encodes a 200 kDa protein called tuberin. TSC2 heterodimerizes with TSC1 to form a complex with GTPase-activating protein (GAP) activity. The C-terminus of TSC2 contains the GAP domain responsible for this catalytic activity. The complex was first discovered through its role in the tumor-forming condition Tuberous Sclerosis. Mutations in TSC1 and TSC2 can either destabilize the complex or compromise the GAP activity. The TSC1-TSC2 complex acts as a GAP for the small G-protein Rheb, expressed ubiquitously throughout the body (1).

ATG4B - a cysteine protease involved in autophagosome elongation

Autophagy can be broken down into 4 main stages: phagophore nucleation, autophagosome elongation, autophagosome docking and fusion with a lysosome, and vesicle breakdown and degradation. ATG4B is one of four ATG4 homologs (ATG4A, ATG4B, ATG4C, and ATG4D) involved in autophagosome elongation. ATG4B encodes a 48 kDa protein called autophagin-1 that is a member of the C54 family of cysteine proteases.

TSC1 - a negative regulator of mTOR signaling

TSC1 is a tumor suppressor gene that encodes a 130 kDa protein called hamartin. TSC1 was first identified as an oncogenic driver of Tuberous Sclerosis, a condition characterized by numerous benign tumors of the skin, brain, heart, and lungs. A mutation in TSC1 is responsible for the uncontrolled growth characteristic of these tumors. This discovery led to a greater understanding of the physiologic role of TSC1 as a negative cell cycle regulator. The distinct but related gene TSC2 encodes a 200 kDa protein called tuberin.

ATG16L1 - a key player in the development of the autophagosome

OATP8 - A membrane transport protein responsible for cancer drug uptake

Human hepatocytes express important transport proteins that are responsible for the uptake and removal of organic anions from the blood. These proteins are members of the organic anion-transporting polypeptide (OATP) family and are essential for proper liver function. OATPs are encoded by the SLC21 gene family and contain 12 transmembrane alpha-helices and are primarily expressed in the liver. The OATP family transports endogenous substrates like bile salts and steroid hormones as well as exogenous molecules like anticancer drugs and imaging agents.

Thrombomodulin - A multifunctional protein with roles in inflammation and coagulation

Thrombomodulin, also known as BDCA-3, is a glycosylated transmembrane protein present on the surface of vascular endothelial cells. Thrombomodulin is a high-affinity receptor for thrombin, a key protein in the coagulation cascade. Formation of the thrombomodulin-thrombin complex blocks the thrombin dependent conversion of fibrinogen to fibrin and also catalyzes the activation of protein C. Active protein C is able to proteolytically inactivate enhancers of the coagulation cascade.

5 Simple Western Antibody Facts

Beclin 2, a mammal-specific homolog of Beclin 1 with unique functional similarities and differences

Beclin 2 (BECN2) is also called Beclin-1-like protein 1/ BECN1P1 and it was recently identified by He et al 2013 as a mammal-specific homolog of the evolutionarily conserved protein Beclin 1 which is well established for its role in the regulation of autophagy and oncogenic suppression (1). He et al 2013 documented that human Beclin 2 is 57% similar to Beclin 1, and they confirmed its presence in several tissues including brain, placenta, thymus, uterus and skeletal muscles.

c-Myc - transcription factor and oncogene

c-Myc is a protein of the Myc family of transcription factors (c-Myc, B-Myc, L-Myc, N-Myc, and s-Myc) encoded by the MYC proto-oncogene. c-Myc was first discovered as the cellular homolog of the retroviral v-Myc oncogene. c-Myc is a transcription factor for genes involved in cell growth, proliferation, differentiation, and apoptosis. c-Myc contains a basic helix-loop-helix domain and a leucine zipper domain that allow for its heterodimerization with its binding partner Max. Myc/Max complexes are able to activate genes via the Myc transactivation domain (1).

Pages