Antibody database

H3.1 - A core histone essential for genome storage and organization

Histones are the main protein component of chromatin and are essential for the storage and compaction of the genome. DNA wraps around histone oligomers to make up nucleosomes, the individual subunits of chromatin. By altering the accessibility of the genome, chromatin structure is important for regulating various cellular processes including replication, transcription, and DNA repair. Typically chromatin structure is influenced by post-translational modification of histone proteins at lysine and arginine residues.

H3.3 - A histone variant regulating gene expression and differentiation

Histones, the main protein component of chromatin, are essential for storing and organizing the genome in a compact yet accessible manner. DNA wraps tightly around histone oligomers to form nucleosomes which can store unused portions of DNA and regulate accessibility to the replication or transcription machinery. By affecting chromatin structure histones and their modifying enzymes make up a complex network with important regulatory roles in DNA replication, mitosis, and gene expression.

TTF1 / NKX2.1 - An essential regulator of lung development with implications in cancer diagnostics

Thyroid transcription factor 1 (TTF-1), also known as NKX2.1, is a conserved master regulatory transcription factor involved in the development of the lung, brain, and thyroid (1). In the lung TTF-1 positively regulates the expression of several lung-specific proteins including thyroglobulin, thyroperoxidase, and surfactant proteins A, B, and C (1).

NLRP3/NALP3 - Sensing and responding to pathogen infection

The inflammasome is a multi protein complex that is an important component of the innate immune response. The inflammasome is able to sense and respond to pathogen infections by recognizing pathogen-associated molecular patterns and mediating the secretion of inflammatory cytokines. Of the various types of inflammasomes, NLRP3/NALP3 is unique because of the diverse range of microbes it is able to detect (1).

AKT1 - Regulating cell growth and survival through phosphorylation

AKT1 is a serine/threonine protein kinase with homology to protein kinase A (PKA) and protein kinase C (PKC). AKT1 contains the central kinase domain sandwiched between a pleckstrin homology domain and a regulatory domain (1). AKT1 is regulated by receptor tyrosine kinase pathways and is activated in a PI3K-dependent manner following growth factor stimulation (1).

p53 - Investigating an important tumor suppressor

p53 is a tumor suppressor that has a central role in regulating cell cycle arrest, DNA repair, and apoptosis. p53 is widely studied for its role in cancer and is mutated or altered in more than half of all cancers (1). This widespread role in tumorigenesis has made p53 one of the most highly studied proteins and a target for anti-cancer therapeutics. Normally, p53 allows cells to sense and respond to cellular stress such as DNA damage or hypoxia (2). In response to these signals, p53 is activated through post-translational modification and protein stabilization.

SDHA - oxidative enzyme in the citric acid cycle

Succinate dehydrogenase is an important tetrameric protein involved in the citric acid cycle. It is localized to the inner mitochondrial membrane of cells. Succinate dehydrogenase makes up Complex II of the electron transport chain (ETC) and is responsible for the conversion of succinate to fumarate. This enzymatic reaction also generates a molecule of FADH2, harnessed by the ETC to make energy for the cell. SDHA, the flavoprotein subunit of the succinate dehydrogenase tetrameric complex, interacts with SDHB, SDHC, and SDHD in the complex.

TGF-beta RIII - a high affinity reservoir for TGF-beta I/II ligands with therapeutic potential

TGF beta (transforming growth factor beta) is a superfamily of cytokines that participate in a variety of cellular processes including growth, proliferation, differentiation, and apoptosis. There are 3 classes of receptors for TGF beta cytokines and they are known as type I, II, and III. TGF beta receptor type III (TGF beta-RIII) is a high affinity receptor for TGF beta-I and TGF beta-II and binds other TGF beta ligands with lower affinities. It is a 250-300 kDa protein that can exist as a single pass transmembrane protein or in its soluble/secreted form.

ACTB - an abundant cytoskeletal component with applications for gene expression analysis

Actin is the widely studied and ubiquitous cytoskeletal protein capable of forming dynamic microfilament structures. These filaments are essential for diverse cellular functions including cell shape, migration, cytokinesis, and intracellular trafficking (1). Actin is present in three main isoforms: alpha, beta, and gamma. These globular actin isoforms (G-actin) assemble into dynamic filamentous polymers called F-actin. This process is highly regulated by various actin-binding proteins that affect the stability, organization, and depolymerization of F-actin (1).

AHR - A transcription factor regulating immunity and tumorigenesis

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that controls the expression of a diverse set of genes. In the absence of ligand, AHR is retained in the cytoplasm. Upon ligand binding AHR translocates to the nucleus where it forms a heterodimer with aryl hydrocarbon receptor nuclear translocator (ARNT) (1). This receptor complex then recognizes AHR-response elements in target genes to regulate their transcription.

Pages