Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His Protein, CF

Images

 
Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His-tag Protein (Catalog # 11108-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
2 μg/lane of Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His-tag Protein (Catalog # 11108-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue ...read more

Product Details

Summary
Reactivity VSpecies Glossary
Applications Bioactivity
Format
Carrier-Free

Order Details

Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His Protein, CF Summary

Additional Information
His-tag
Details of Functionality
Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag  (Catalog # 933-ZN).
Source
Human embryonic kidney cell, HEK293-derived sars-cov-2 Spike protein
SARS-CoV-2 P.2 Spike
(Val16-Lys1211)
(Glu484Lys, Asp614Gly, Val1176Phe)
(Arg682Ser, Arg685Ser, Lys986Pro, Val987Pro)
Accession # YP_009724390.1
GCN4-IZ6-His tag
N-terminusC-terminus
Accession #
N-terminal Sequence
Val16
Protein/Peptide Type
Recombinant Proteins
Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Endotoxin Note
<0.10 EU per 1 μg of the protein by the LAL method.

Applications/Dilutions

Dilutions
  • Bioactivity
Theoretical MW
138 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
SDS-PAGE
150-170 kDa, under reducing conditions.

Packaging, Storage & Formulations

Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.
Buffer
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Reconstitution Instructions
Reconstitute at 500 μg/mL in PBS.

Notes

This product is produced by and ships from R&D Systems, Inc., a Bio-Techne brand.

Alternate Names for Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His Protein, CF

  • 2019-nCoV S Protein
  • 2019-nCoV Spike
  • COVID-19 Spike
  • E2
  • Human coronavirus spike glycoprotein
  • Peplomer protein
  • S glycoprotein
  • S Protein
  • SARS-COV-2 S protein
  • SARS-COV-2 Spike glycoprotein
  • SARSCOV2 Spike protein
  • SARS-CoV-2
  • Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein
  • Spike glycoprotein
  • Spike
  • surface glycoprotein

Background

SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that are commonly comprised of four structural proteins: Spike protein(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV-2 Spike Protein (S Protein) is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into two distinct peptides, S1 and S2 subunits, is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor, while the S2 subunit is involved with cell fusion (3-5). A metallopeptidase, angiotensin‑converting enzyme 2 (ACE-2), has been identified as a functional receptor for SARS-CoV-2 through interaction with a receptor binding domain (RBD) located at the C-terminus of S1 subunit (6,7). The S1 subunit of SARS-CoV-2 shares 65% amino acid (aa) sequence identity with the S1 subunit of SARS-CoV-1, but only 22% aa sequence identity with the S1 subunit of MERS-CoV. The differences in aa sequence identity is consistent with the finding that SARS and MERS bind different cellular receptors (8). The S Protein of the SARS-CoV-2 virus binds ACE-2 with higher affinity and faster binding kinetics than its SARS-CoV-1 counterpart (9). Before binding to the ACE-2 receptor, structural analysis of the S1 trimer shows that only one of the three RBD domains in the trimeric structure is in the "up" conformation. This is an unstable and transient state that passes between trimeric subunits but is nevertheless an exposed state to be targeted for neutralizing antibody therapy (10). Polyclonal antibodies to the RBD of the SARS-CoV-2 S1 subunit have been shown to inhibit interaction with the ACE-2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (11). There is also promising work showing that the RBD may be used to detect presence of neutralizing antibodies present in a patient's bloodstream, consistent with developed immunity after exposure to the SARS-CoV-2 virus (12). Lastly, it has been demonstrated the S Protein can invade host cells through the CD147/EMMPRIN receptor and mediate membrane fusion (13, 14). Several emerging SARS-CoV-2 genomes have been identified, including the P.2 or Zeta variant. First identified in Brazil, the P.2 variant contains several mutations in the S protein predicted to affect viral fitness and transmissibility. The E484K mutation, found within the RBD domain, is a potentially crucial mutation as it creates a new site for hACE-2 binding and may enhance binding affinity (15). The D614G mutation is located nearby to the RBD domain and has been shown to increase viral infectivity (16). Additionally, the E484K substitution alone has been shown to confer resistance to several monoclonal antibodies and is responsible for the first confirmed SARS-CoV-2 reinfection (17).
  1. Wu, F. et al. (2020) Nature 579:265.
  2. Tortorici, M.A. and D. Veesler (2019). Adv. Virus Res. 105:93.
  3. Bosch, B.J. et al. (2003) J. Virol. 77:8801.
  4. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
  5. Millet, J.K. and G.R. Whittaker (2015) Virus Res. 202:120.
  6. Li, W. et al. (2003) Nature 426:450.
  7. Wong, S.K. et al. (2004) J. Biol. Chem. 279:3197.
  8. Jiang, S. et al. (2020) Trends. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
  9. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
  10. Wrapp, D. et al. (2020) Science 367:1260.
  11. Tai, W. et al. (2020) Cell. Mol. Immunol. https://doi.org/10.1016/j.it.2020.03.007.

Publications for SARS-CoV-2 Spike (11108-CV) (0)

There are no publications for SARS-CoV-2 Spike (11108-CV).
By submitting your publication information earn gift cards and discounts for future purchases.

Reviews for SARS-CoV-2 Spike (11108-CV) (0)

There are no reviews for SARS-CoV-2 Spike (11108-CV). By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
  • Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
  • Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen

FAQs for SARS-CoV-2 Spike (11108-CV) (0)

There are no specific FAQs related to this product. Read our general customer & technical service FAQs.

Additional SARS-CoV-2 Spike Products

Blogs on SARS-CoV-2 Spike

There are no specific blogs for SARS-CoV-2 Spike, but you can read our latest blog posts.

Contact Information

Product PDFs

Calculators

Concentration Calculator

The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.

=
÷

Review this Product

Be the first to review our Recombinant SARS-CoV-2 P.2 Spike (GCN4-IZ) His Protein, CF and receive a gift card or discount.

Bioinformatics

Uniprot