Recombinant SARS-CoV-2 B.1.617.2 Spike L452R T478K His-tag (Catalog # 10942-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
2 μg/lane of Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein (Catalog # 10942-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized byCoomassie® Blue staining, ...read more
Measured by its binding ability in a functional ELISA with Recombinant
Human ACE-2 His-tag (Catalog #
933-ZN).
Source
Human embryonic kidney cell, HEK293-derived sars-cov-2 Spike protein Val16-Lys1211 (Thr19Arg, Gly142Asp, Glu156Gly, Phe157 del, Arg158 del, Leu452Arg, Thr478Lys, Asp614Gly, Pro681Arg, Asp950Asn) (Arg682Ser, Arg685Ser, Lys986Pro, Val987Pro), with a C-terminal 6-His tag
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Endotoxin Note
<0.10 EU per 1 μg of the protein by the LAL method.
Applications/Dilutions
Dilutions
Bioactivity
Theoretical MW
134 kDa. Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
SDS-PAGE
150-165 kDa, reducing conditions.
Publications
Read Publication using 10942-CV in the following applications:
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
12 months from date of receipt, -20 to -70 °C as supplied.
1 month, 2 to 8 °C under sterile conditions after reconstitution.
3 months, -20 to -70 °C under sterile conditions after reconstitution.
Buffer
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Reconstitution Instructions
Reconstitute at 500 μg/mL in PBS.
Notes
This product is produced by and ships from R&D Systems, Inc., a Bio-Techne brand.
Alternate Names for Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF
2019-nCoV S Protein
2019-nCoV Spike
COVID-19 Spike
E2
Human coronavirus spike glycoprotein
Peplomer protein
S glycoprotein
S Protein
SARS-COV-2 S protein
SARS-COV-2 Spike glycoprotein
SARSCOV2 Spike protein
SARS-CoV-2
Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein
Spike glycoprotein
Spike
surface glycoprotein
Background
SARS-CoV-2,
which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs
to a family of viruses known as coronaviruses that also include MERS-CoV and
SARS-CoV-1. Coronaviruses are commonly comprised of four structural proteins:
Spike protein (S), Envelope protein (E), Membrane protein (M) and Nucleocapsid
protein (N) (1). The SARS-CoV-2 S protein is a glycoprotein that mediates
membrane fusion and viral entry. The S protein is homotrimeric, with each
~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as
with most coronaviruses, proteolytic cleavage of the S protein into S1 and S2
subunits is required for activation. The S1 subunit is focused on attachment of
the protein to the host receptor while the S2 subunit is involved with cell
fusion (3-5). The S protein of SARS‑CoV‑2 shares 75% and 29% amino acid sequence
identity with S protein of SARS-CoV-1 and MERS, respectively. The S Protein of
the SARS-CoV-2 virus, like the SARS-CoV-1 counterpart, binds a metallopeptidase, Angiotensin-Converting Enzyme 2
(ACE-2), but with much higher affinity and faster binding kinetics through the
receptor binding domain (RBD) located in the C-terminal region of S1 subunit (6).
It has been demonstrated that the S Protein can invade host cells through the
CD147/EMMPRIN receptor and mediate membrane fusion (7, 8). Polyclonal
antibodies to the RBD of the SARS-CoV-2 protein have been shown to inhibit
interaction with the ACE-2 receptor, confirming RBD as an attractive target for
vaccinations or antiviral therapy (9). There is also promising work showing
that the RBD may be used to detect presence of neutralizing antibodies present
in a patient's bloodstream, consistent with developed immunity after exposure
to the SARS-CoV-2 (10). Several emerging SARS-CoV-2 genomes have been
identified with mutations in the RBD compared to the Wuhan-Hu-1 SARS-CoV-2
reference sequence. First detected in India in December 2020, the B.1.617.2, or
Delta variant, is considered a Variant of Concern (VOC) as it contains several
mutations that potentially affect viral fitness and transmissibility. The L452R
mutation is located in the RBD and is known to increase affinity for ACE-2
receptors and is associated with resistance to neutralization by multiple
monoclonal antibodies (11, 12). Also located in the RBD, the T478K mutation shows
significant increase in ACE-2 binding affinity and may make the variant more
transmissible and infectious (13). The D614G mutation is located nearby to the
RBD domain and has been shown to increase viral infectivity (14). The P618H
mutation is found adjacent to the furin cleavage site and is proposed to
enhance S protein cleavage and increase viral infectivity (15). Additionally,
vaccines developed against SARS-CoV-2 show a decrease in efficacy towards the
Delta variant (16).
Wu, F. et al. (2020) Nature 579:265.
Tortorici, M.A. and D. Veesler (2019) Adv. Virus Res. 105:93.
Bosch, B.J. et al. (2003). J. Virol. 77:8801.
Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
Millet, J.K. and G.R. Whittaker (2015) Virus Res. 202:120.
The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.
=
÷
Review this Product
Be the first to review our Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF and receive a gift card or discount.