Recombinant SARS-CoV-2 A.27 Spike GCN4-IZ His-tag Protein CF

Images

 
Recombinant SARS-CoV-2 A.27 Spike (GCN4-IZ) His-tag (Catalog # 10845-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
Recombinant SARS-CoV-2 A.27 Spike protein was immobilized on a Biacore Sensor Chip CM5, and binding to recombinant human ACE-2 (933-ZN) was measured at a concentration range between 0.046 nM and 47.2 nM. The ...read more
2 μg/lane of Recombinant SARS-CoV-2 A.27 Spike (GCN4-IZ) His-tag Protein (Catalog # 10845-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue ...read more

Product Details

Summary
Reactivity VSpecies Glossary
Applications Bioactivity
Format
Carrier-Free

Order Details

Recombinant SARS-CoV-2 A.27 Spike GCN4-IZ His-tag Protein CF Summary

Details of Functionality

Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag (Catalog # 933-ZN).

Source
Human embryonic kidney cell, HEK293-derived sars-cov-2 Spike protein
SARS-CoV-2 Spike
(Val16-Lys1211)(Leu18Phe, Leu452Arg, Asn501Tyr, Ala653Val, His655Tyr, Asp796Tyr)(Arg682Ser, Arg685Ser, Lys986Pro, Val987Pro)
Accession # YP_009724390.1
GCN4-IZ6-His tag
N-terminusC-terminus
Accession #
N-terminal Sequence
Val16
Protein/Peptide Type
Recombinant Proteins
Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Endotoxin Note
<0.10 EU per 1 μg of the protein by the LAL method.

Applications/Dilutions

Dilutions
  • Bioactivity
Theoretical MW
138 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
SDS-PAGE
136-167 kDa, under reducing conditions.

Packaging, Storage & Formulations

Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.
Buffer
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Reconstitution Instructions
Reconstitute at 500 μg/mL in PBS.

Notes

This product is produced by and ships from R&D Systems, Inc., a Bio-Techne brand.

Alternate Names for Recombinant SARS-CoV-2 A.27 Spike GCN4-IZ His-tag Protein CF

  • 2019-nCoV S Protein
  • 2019-nCoV Spike
  • COVID-19 Spike
  • E2
  • Human coronavirus spike glycoprotein
  • Peplomer protein
  • S glycoprotein
  • S Protein
  • SARS-COV-2 S protein
  • SARS-COV-2 Spike glycoprotein
  • SARSCOV2 Spike protein
  • SARS-CoV-2
  • Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein
  • Spike glycoprotein
  • Spike
  • surface glycoprotein

Background

SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that are commonly comprised of four structural proteins: Spike protein (S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV-2 Spike Protein (S Protein) is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into the S1 and S2 subunits is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (3-5). The S protein of SARS-CoV-2 shares 75% and 29% amino acid (aa) sequence identity with the S protein of SARS-CoV-1 and MERS, respectively. The S Protein of the SARS-CoV-2 virus, like the SARS-CoV-1 counterpart, binds Angiotensin-Converting Enzyme 2 (ACE-2), but with much higher affinity and faster binding kinetics through the receptor binding domain (RBD) located in the C-terminal region of S1 (6). Based on structural biology studies, the RBD can be oriented either in the up/standing or down/lying state with the up/standing state associated with higher pathogenicity (7). Polyclonal antibodies to the RBD of the SARS-CoV-2 protein have been shown to inhibit interaction with the ACE-2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (8). It has been demonstrated that the S Protein can invade host cells through the CD147/EMMPRIN receptor and mediate membrane fusion (9, 10). A SARS-CoV-2 variant carrying the S protein aa change D614G has become the most prevalent form in the global pandemic and has been associated with greater infectivity and higher viral load (11, 12). The A.27 lineage was first detected in Dec 2020. It contains four key point mutations in the spike protein: L452R, N501Y, A653V and H655Y. Virus with these mutations was reported to escape neutralization from antibodies (13, 14).
  1. Wu, F. et al. (2020) Nature 579:265.
  2. Tortorici, M.A. and D. Veesler (2019) Adv. Virus Res. 105:93.
  3. Bosch, B.J. et al. (2003) J. Virol. 77:8801.
  4. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
  5. Millet, J.K. and G.R. Whittaker (2015) Virus Res. 202:120.
  6. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
  7. Yuan, Y. et al. (2017) Nat. Commun. 8:15092.
  8. Tai, W. et al. (2020) Cell. Mol. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
  9. Wang, X. et al. (2020) https://doi.org/10.1038/s41423-020-0424-9.
  10. Wang, K. et al. (2020) bioRxiv https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.
  11. Korber, B. et al. (2020) Cell 182, 812.
  12. Zhang, L. et al. (2020) bioRxiv https://www.biorxiv.org/content/10.1101/2020.06.12.148726v1.
  13. Deng X. et al. (2021) medRxiv DOI: 10.1101/2021.03.07.21252647.
  14. SARS-CoV-2 variants of concern as of 6 May 2021.

Publications for SARS-CoV-2 Spike (10845-CV) (0)

There are no publications for SARS-CoV-2 Spike (10845-CV).
By submitting your publication information earn gift cards and discounts for future purchases.

Reviews for SARS-CoV-2 Spike (10845-CV) (0)

There are no reviews for SARS-CoV-2 Spike (10845-CV). By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
  • Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
  • Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen

FAQs for SARS-CoV-2 Spike (10845-CV) (0)

There are no specific FAQs related to this product. Read our general customer & technical service FAQs.

Additional SARS-CoV-2 Spike Products

Blogs on SARS-CoV-2 Spike

There are no specific blogs for SARS-CoV-2 Spike, but you can read our latest blog posts.

Contact Information

Product PDFs

Calculators

Concentration Calculator

The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.

=
÷

Review this Product

Be the first to review our Recombinant SARS-CoV-2 A.27 Spike GCN4-IZ His-tag Protein CF and receive a gift card or discount.

Bioinformatics

Uniprot